Determination of a TRF from simulated VLBI and SLR data in the frame of GGOS

S. Glaser1, D. Ampatzidis2, H. Schuh1,2, R. Koenig2, R. Heinkelmann2, T. Nilsson2, F. Flechtner1,2

1Technische Universität Berlin, 2GFZ German Research Centre for Geosciences

Singapore, August 4th, 2015
Outline

1. Introduction
 - Motivation
 - Project GGOS-SIM
Outline

1 Introduction
 - Motivation
 - Project GGOS-SIM

2 VLBI
 - Input data
 - Strategy
 - Results
Outline

1. Introduction
 - Motivation
 - Project GGOS-SIM

2. VLBI
 - Input data
 - Strategy
 - Results

3. SLR
 - Input data
 - Strategy
 - Results
Outline

1 Introduction
 • Motivation
 • Project GGOS-SIM

2 VLBI
 • Input data
 • Strategy
 • Results

3 SLR
 • Input data
 • Strategy
 • Results

4 Summary
Outline

1. Introduction
2. VLBI
3. SLR
4. Summary
Reference frame as the realization of a reference system

Figure: Terrestrial reference frames connect the three pillars of geodesy, according to IAG (2015)
Combination of different space-geodetic techniques

- GPS
- DORIS
- SLR
- VLBI
ITRF2008 (Altamimi et al., 2011)

Requirements to a TRF for GGOS

- Accuracy of 1 mm
- Stability of 0.1 mm/yr
Project overview

Simulation of the Global Geodetic Observing System

- Funded by the German research foundation (DFG)
- Cooperation of TU Berlin (H. Schuh, S. Glaser) with GFZ Oberpfaffenhofen (R. Koenig, D. Ampatzidis)
- Simulation of GNSS, SLR, DORIS and VLBI observations to realize a TRS
- In the framework of the PLATO-WG
Objectives of the project

Questions to be answered:
- What is necessary in order to achieve the requirements to a TRF in the framework of GGOS?
 - technique-specific (e.g., improvements of the space techniques, network geometry, ...)
 - combination related issues (e.g., local ties, level of combination, ...)
- What is the effect of co-location in space on the TRF?
Objectives of the project

Questions to be answered

What is necessary in order to achieve the requirements to a TRF in the framework of GGOS?

- technique-specific (e.g., improvements of the space techniques, network geometry, ...)
- combination related issues (e.g., local ties, level of combination, ...)

What is the effect of co-location in space on the TRF?
Objectives of the project

Questions to be answered

- What is necessary in order to achieve the requirements to a TRF in the framework of GGOS?
Objectives of the project

Questions to be answered

- What is necessary in order to achieve the requirements to a TRF in the framework of GGOS?
 - technique-specific (e.g. improvements of the space techniques, network geometry, ...) and
 - combination related issues (e.g. local ties, level of combination, ...)
Objectives of the project

Questions to be answered

- What is necessary in order to achieve the requirements to a TRF in the framework of GGOS?
 - technique-specific (e.g. improvements of the space techniques, network geometry, ...)
 - combination related issues (e.g. local ties, level of combination, ...)

- What is the effect of co-location in space on the TRF?
Outline

1. Introduction
2. VLBI
3. SLR
4. Summary
Input data

- Rapid turnaround R1, R4 sessions (24h)
- Time span: 2008-2014 (695 sessions)
- 28 globally distributed stations
- Reduction models according to IERS Conventions 2010
- No discontinuities
Simulation strategy

Prominent random error sources

- Troposphere
- Clock

Monte Carlo Simulator (Pany et al., 2011) with the software VieVS@GFZ

\[\text{\texttt{o}} \cdot \text{\texttt{c}} = (\text{\texttt{zwd}}_1 \cdot \text{\texttt{wmf}}_1 (\text{\texttt{e}}) + \text{\texttt{clk}}_1) + (\text{\texttt{zwd}}_2 \cdot \text{\texttt{wmf}}_2 (\text{\texttt{e}})) - (\text{\texttt{zwd}}_1 \cdot \text{\texttt{wmf}}_1 (\text{\texttt{e}}) + \text{\texttt{clk}}_2) + \text{\texttt{wn}}_{\text{\texttt{bsl}}} \]

- \text{\texttt{zwd}}_1, \text{\texttt{zwd}}_2: zenith wet delay at station 1 and 2 of the baseline
- \text{\texttt{wmf}}_1, \text{\texttt{wmf}}_2: wet mapping function of elevation \text{\texttt{e}} at station 1 and 2 of the baseline
- \text{\texttt{clk}}_1, \text{\texttt{clk}}_2: clock correction at station 1 and 2
- \text{\texttt{wn}}_{\text{\texttt{bsl}}}: white noise of baseline

Glaser et al.
Simulation strategy

Prominent random error sources

- Troposphere
- Clock
Simulation strategy

Prominent random error sources
- Troposphere
- Clock

Monte Carlo Simulator (Pany et al., 2011) with the software VieVS@GFZ

$$o - c = (zwd_2 \cdot wmf_2(e) + clk_2) - (zwd_1 \cdot wmf_1(e) + clk_1) + wn_{bsl}$$

- $zwd_{1,2}$: zenith wet delay at station 1 and 2 of the baseline
- $wmf_{1,2}(e)$: wet mapping function of elevation e at station 1 and 2 of the baseline
- $clk_{1,2}$: clock correction at station 1 and 2
- wn_{bsl}: white noise of baseline bsl
Simulation strategy

Monte Carlo Simulator (Pany et al., 2011) with the software VieVS@GFZ

\[o - c = (zwd_2 \cdot wmf_2(e) + clk_2) - (zwd_1 \cdot wmf_1(e) + clk_1) + wn_{bsl} \]
Simulation strategy

Monte Carlo Simulator (Pany et al., 2011) with the software VieVS@GFZ

\[o - c = (zwd_2 \cdot wmf_2(e) + clk_2) - (zwd_1 \cdot wmf_1(e) + clk_1) + wn_{bsl} \]

- **Troposphere**: turbulence model (Nilsson and Haas, 2010), same for all stations
- **Clock**: random walk plus integrated random walk process (Herring et al., 1990), \(ASD = 1e-14 @ 50 \text{ min} \)
- **White noise**: mean formal error of the observed group delay from reality, \(wn = 15 \text{ ps} \)
Combination strategy

Parameterization
- Estimated: $X, \dot{X}, x_p, y_p, dUT_1$
- Reduced: clock, troposphere, celestial pole offsets
- Fixed: α, δ

Datum realization
- Origin: NNT w. r. t. ITRF2008 using 10 core stations
- Orientation: NNR w. r. t. ITRF2008 using 10 core stations
- Scale: from VLBI observations

Glaser et al.

GGOS-SIM

08/04/2015

14 / 27
Combination strategy

Combination of datum-free normal equation systems
Combination strategy

Combination of datum-free normal equation systems

Parameterization

- Estimated: \mathbf{X}, $\dot{\mathbf{X}}$, x_p, y_p, $dUT1$
- Reduced: clock, troposphere, celestial pole offsets
- Fixed: α, δ
Combination strategy

Combination of datum-free normal equation systems

Parameterization

- *Estimated*: $X, \dot{X}, x_p, y_p, dUT1$
- *Reduced*: clock, troposphere, celestial pole offsets
- *Fixed*: α, δ

Datum realization

- *Origin*: NNT w. r. t. ITRF2008 using 10 core stations
- *Orientation*: NNR w. r. t. ITRF2008 using 10 core stations
- *Scale*: from VLBI observations
Results - Positions and velocities

VLBI-TRF from simulated (top) and real (bottom) observations

<table>
<thead>
<tr>
<th></th>
<th>T_x [mm]</th>
<th>T_y [mm]</th>
<th>T_z [mm]</th>
<th>R_x [µas]</th>
<th>R_y [µas]</th>
<th>R_z [µas]</th>
<th>D [ppb]</th>
<th>s_0 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>0.4±0.6</td>
<td>-0.4±0.6</td>
<td>-0.0±0.6</td>
<td>22±25</td>
<td>3±21</td>
<td>11±23</td>
<td>-0.17±0.09</td>
<td>2.3</td>
</tr>
<tr>
<td>vel</td>
<td>-0.1±0.1</td>
<td>0.0±0.1</td>
<td>0.0±0.1</td>
<td>-6±4</td>
<td>5±4</td>
<td>-0.01±0.02</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T_x [mm]</th>
<th>T_y [mm]</th>
<th>T_z [mm]</th>
<th>R_x [µas]</th>
<th>R_y [µas]</th>
<th>R_z [µas]</th>
<th>D [ppb]</th>
<th>s_0 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>-1.9±2.2</td>
<td>0.7±2.2</td>
<td>-0.6±2.1</td>
<td>-16±87</td>
<td>-1±80</td>
<td>51±86</td>
<td>-0.03±0.33</td>
<td>7.3</td>
</tr>
<tr>
<td>vel</td>
<td>0.3±0.5</td>
<td>-0.3±1.2</td>
<td>0.4±1.2</td>
<td>3±19</td>
<td>-1±17</td>
<td>-22±19</td>
<td>0.06±0.07</td>
<td>1.6</td>
</tr>
</tbody>
</table>

In general: agreement on the sub-mm level

Largest differences for "real" VLBI-TRF in T_x and R_z (mm level)

Standard deviations of transformation parameters 3-5 times smaller in case of sim-VLBI-TRF

Glaser et al.
GGOS-SIM
08/04/2015 15 / 27
Results - Positions and velocities

VLBI-TRF from simulated (top) and real (bottom) observations

14-parameter-Helmert transformation at epoch 2005.0 w. r. t. ITRF2008

<table>
<thead>
<tr>
<th></th>
<th>T_x [mm]</th>
<th>T_y [mm]</th>
<th>T_z [mm]</th>
<th>R_x [µas]</th>
<th>R_y [µas]</th>
<th>R_z [µas]</th>
<th>D [ppb]</th>
<th>s_0 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>0.4±0.6</td>
<td>-0.4±0.6</td>
<td>-0.0±0.6</td>
<td>22±25</td>
<td>3±21</td>
<td>11±23</td>
<td>-0.17±0.09</td>
<td>2.3</td>
</tr>
<tr>
<td>vel [yr]</td>
<td>-0.1±0.1</td>
<td>0.0±0.1</td>
<td>0.0±0.1</td>
<td>-6±4</td>
<td>5±4</td>
<td>-0.01±0.02</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>pos</td>
<td>-1.9±2.2</td>
<td>0.7±2.2</td>
<td>-0.6±2.1</td>
<td>-16±87</td>
<td>-1±80</td>
<td>51±86</td>
<td>-0.03±0.33</td>
<td>7.3</td>
</tr>
<tr>
<td>vel [yr]</td>
<td>0.3±0.5</td>
<td>-0.3±1.2</td>
<td>0.4±1.2</td>
<td>3±19</td>
<td>-1±17</td>
<td>-22±19</td>
<td>0.06±0.07</td>
<td>1.6</td>
</tr>
</tbody>
</table>

- In general: agreement on the sub-mm level
- Largest differences for “real” VLBI-TRF in T_x and R_z (mm level)
- Standard deviations of transformation parameters 3-5 times smaller in case of sim-VLBI-TRF
Results - ERP

ERP w. r. t. IERS 08 C04 (Bizouard and Gambis, 2011)

mean, standard deviation in brackets

\[\Delta dUT1, \Delta y, \Delta x\]
Outline

1. Introduction
2. VLBI
3. SLR
4. Summary
Input data

Data

Observations to LAGEOS-1 and LAGEOS-2
Time span: 2008-2014
49 globally distributed stations
Reduction models according to IERS Conventions 2010 and ILRS Analysis-WG rules
No discontinuities
→ Consistent with VLBI input data

Glaser et al.
Input data

- Observations to LAGEOS-1 and LAGEOS-2
- Time span: 2008-2014
- 49 globally distributed stations
- Reduction models according to IERS Conventions 2010 and ILRS Analysis-WG rules
- No discontinuities
Input data

- Observations to LAGEOS-1 and LAGEOS-2
- Time span: 2008-2014
- 49 globally distributed stations
- Reduction models according to IERS Conventions 2010 and ILRS Analysis-WG rules
- No discontinuities
 → Consistent with VLBI input data
Data

Station network
Simulation strategy
Simulation strategy

Simulation of the observations

- Number of observations according to those accepted in Precise Orbit Determination
- Accuracy of observations: station-dependent white noise according to RMS from reality
Results - Station performance: Number of observations

- Simulation similar to reality
- However, homogeneous number of observations for all stations within the simulation
Results - Station performance: Accuracy

- Station-dependent accuracy according to reality
- No variation over the time span within the simulation
Outline

1. Introduction
2. VLBI
3. SLR
4. Summary
Conclusions

VLBI-TRF from simulated observations is in good agreement with "real" VLBI-TRF. Simulated VLBI-TRF is in good agreement with ITRF2008 (station positions, velocities) and IERS C04 series (ERP).

SLR

Simulated station performance (# obs, accuracy) according to reality.

Next steps:
- Refinement of simulated station performance (time- and station-dependent)
- Determination of a simulated SLR-TRF

Glaser et al. 08/04/2015
Conclusions

VLBI

- VLBI-TRF from simulated observations is in good agreement with "real" VLBI-TRF
- Simulated VLBI-TRF in good agreement with ITRF2008 (station positions, velocities) and IERS C04 series (ERP)
Conclusions

VLBI

- VLBI-TRF from simulated observations is in good agreement with “real” VLBI-TRF
- Simulated VLBI-TRF in good agreement with ITRF2008 (station positions, velocities) and IERS C04 series (ERP)

SLR

- Simulated station performance (# obs, accuracy) according to reality
- Next steps:
 - Refinement of simulated station performance (time- and station-dependent)
 - Determination of a simulated SLR-TRF
Further investigations

- Combination of NEQs from simulated observations
Further investigations

- Combination of NEQs from simulated observations
- Applying different combination strategies
 - Local ties (real and simulated)
 - Space ties (e.g. SLR to GNSS satellites, GRASP, CubeSats)
 - Global ties (ERP)
Further investigations

- Combination of NEQs from simulated observations
- Applying different combination strategies
 - Local ties (real and simulated)
 - Space ties (e.g. SLR to GNSS satellites, GRASP, CubeSats)
 - Global ties (ERP)
- Testing different network geometries
Further investigations

- Combination of NEQs from simulated observations
- Applying different combination strategies
 - Local ties (real and simulated)
 - Space ties (e.g. SLR to GNSS satellites, GRASP, CubeSats)
 - Global ties (ERP)
- Testing different network geometries
- Applying new technical system upgrades
Thank you very much for your attention.

susanne.glaser@tu-berlin.de
harald.schuh@tu-berlin.de

Appendix

VLBI

Station performance VLBI: Number of observations

- Number of observations according to reality
Simulation strategy

Monte Carlo Simulator (Pany et al., 2011) with the software VieVS@GFZ

- Troposphere: turbulence model (Nilsson and Haas, 2010)
 - Input parameter (same for all stations):
 - refractive index structure constant $C_n = 2.5 \times 10^{-7} m^{-1/3}$
 - effective height of wet troposp. $H = 2000$ [m]
 - north component of wind vector $v_n = 0$ [m/s]
 - east component of wind vector $v_e = 8$ [m/s]
 - a priori zenith delay $wzd_0 = 150$ [mm]
 - correlation interval $dhseg = 2$ [h]

- Clock: random walk plus integrated random walk process (Herring et al., 1990)
 - $ASD = 1e-14$ @ 50 min

- White noise: mean formal error of the observed group delay from reality, $wn = 15$ ps
Homogeneous white noise for all stations
Results - Velocities

Horizontal station velocity field
Results - Station performance

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Reality</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMS (cm)</td>
<td>RMS (cm)</td>
</tr>
<tr>
<td></td>
<td># obs</td>
<td># obs</td>
</tr>
<tr>
<td>LAGEOS-1</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>528,688</td>
<td></td>
</tr>
<tr>
<td>LAGEOS-2</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>468,834</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>997,522</td>
<td></td>
</tr>
</tbody>
</table>